

"There Is No 'I' In A Team"

INDICATION OF RADIATION

NEOADJUVANT

SEQUENTIAL

ADJUVANT

SIMULTANEOUS

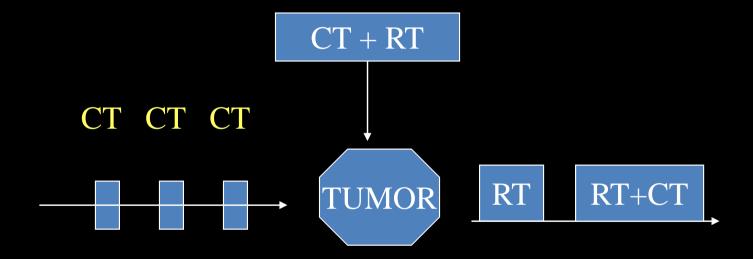
CHEMORADIATION

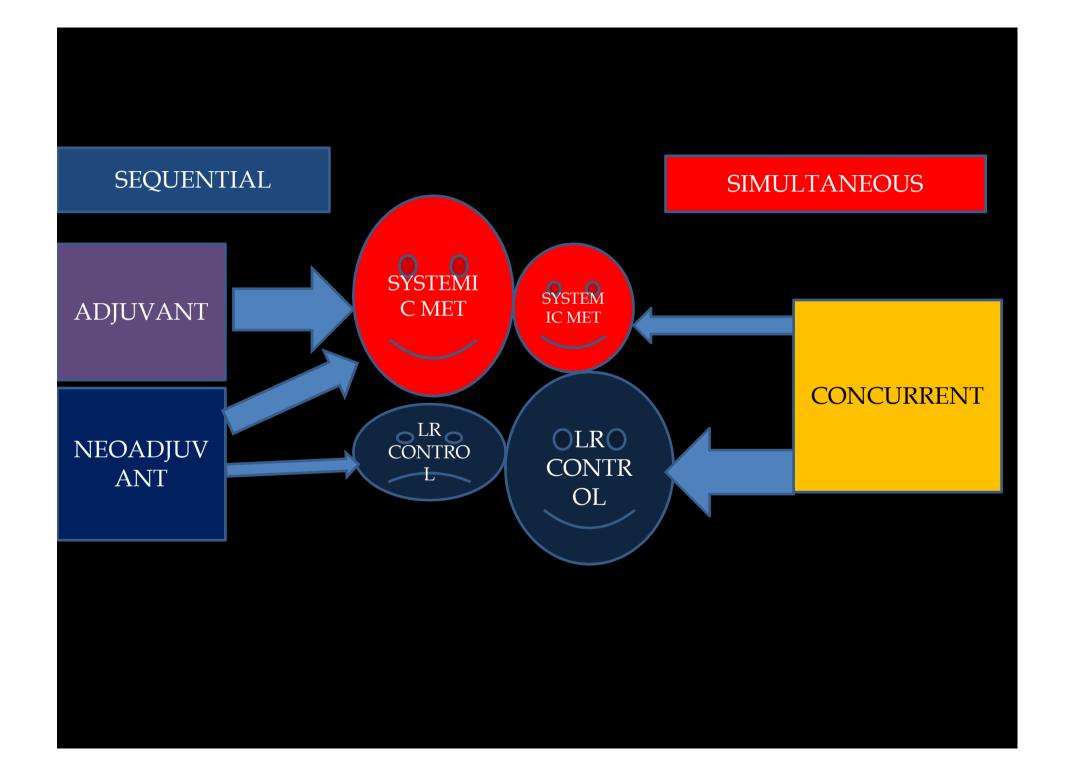
PALLIATIVE RT

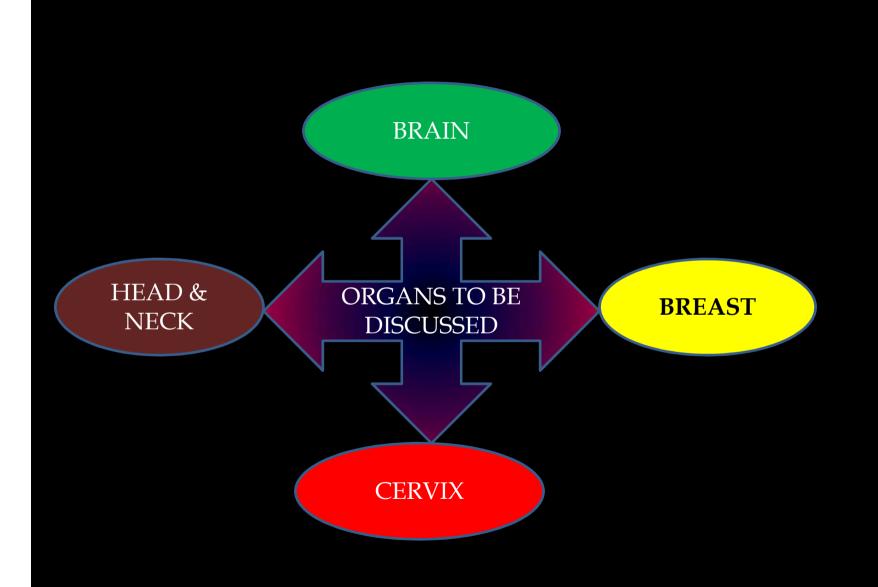
PROPHYLACTIC RT

REIRRADIATION

Neoadjuvant Chemotherapy Prior to Radiation


Pros


- Tumor size reduction
- Effect on
 micrometastasis
 outside radiation field
- Theoretically less toxic concurrent Rx


Cons

- Delayed radiation as definite Rx
- Development of resistant clone-->Tumor regrowth
- Residual side effect from chemoRx--->dealyed radiation

MODES OF ADMINISTRATION

LOW GRADE GLIOMA

LOW DOSE VS HIGH DOSE

EORTC 22844

LOW DOSE Vs HIGH DOSE EORTC 22844

n = 379 (343 evaluated)

Study period – 1985-91

27 institution 10 countries

Low grade Glioma, supratentorial

Arm A - 45Gy in 5 wks

Vs

Arm B - 59.4Gy in 6.6 wks

RESULT :- Median follow up -74 mo

	45 Gy	Vs	59.4Gy
5 yrs O.S	59%	58%	
DFS	50%	47%	

No survival Advantages

LOW VS HIGH DOSE

NCCTC RTOG ECOG

n = 211 (203 eligible) - Study period (1986-94)	Arm A – 50.4 Gy in 28# (n = 101) Arm B – 64.8Gy in 36# (n = 102) Result :-			
		Arm A	Arm B	
	Over all 5 yr. survival	72%	65%	
	Neuro toxicity (Gr III to V)	2.5%	5%	

No improvement in over all survival

Shaw E et al

JCO (2002)20: 2267-76

LOW GRADE GLIOMA LOW Vs HIGH DOSE

• RTOG & EORTC HAVE ADOPTED 54Gy AS STANDARD DOSE FOR LOW GRADE GLIOMA.

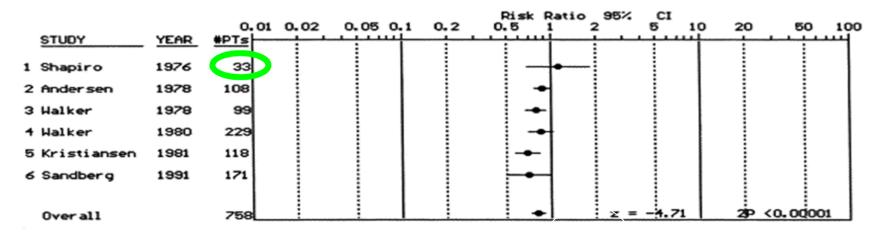
Low grade gliomas : Role of RT

Main indications for adjuvant RT

- Subtotal surgical resection
- Substantial risk of residual disease
- Inoperable lesions
- Progressing lesions
- No feasibility of repeat surgical excision
- Follow up compliance : poor

Early post op RT /Deffered RT till Progression

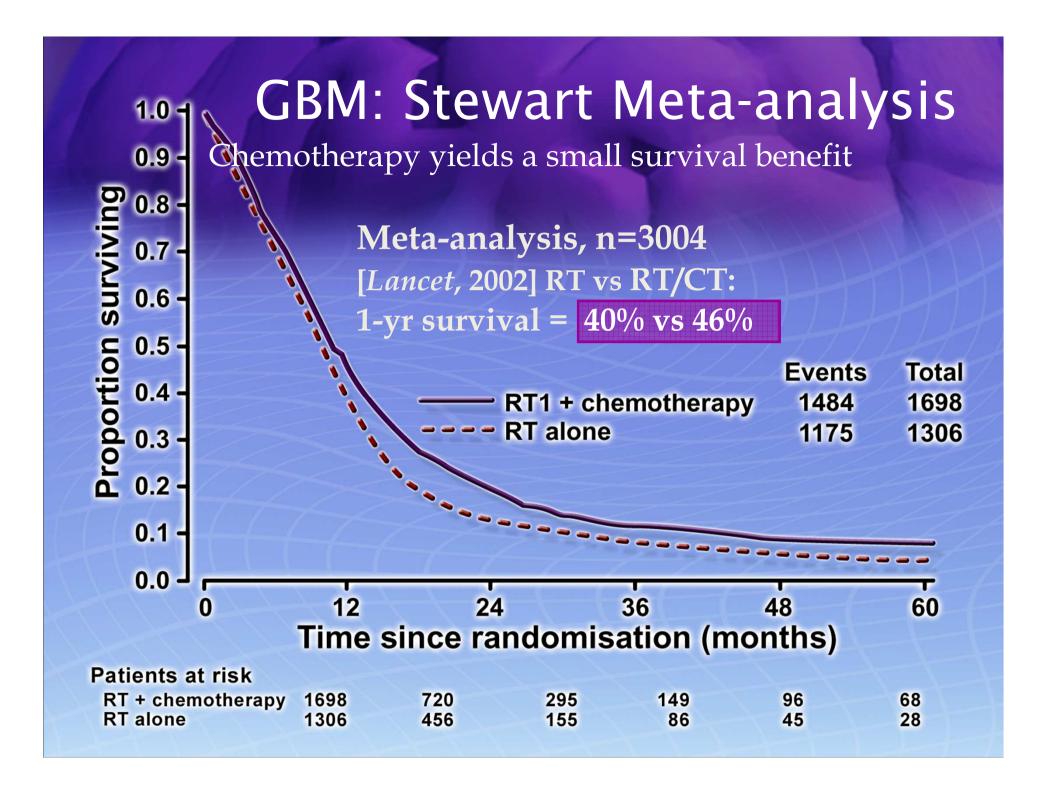
EORTC - 22845


	LUKIC - ZZO43		
n = 311	Early radiation – 154 pts		
Study period -1986-19Gy	vrs		
24 institution across Europe	Deferred radiation till progression = 157 pts		
	RT Dose – 54Gy, 1.8Gy/#		
	RESULTS:-		
	Median follow up- 7.8 yrs		
	Median progression free PORT DIFF survival		DIFF
		5.3 yrs	3.4 yrs
	0.\$	No difference	
	Median Survival	7.4 yrs	7.2 yrs

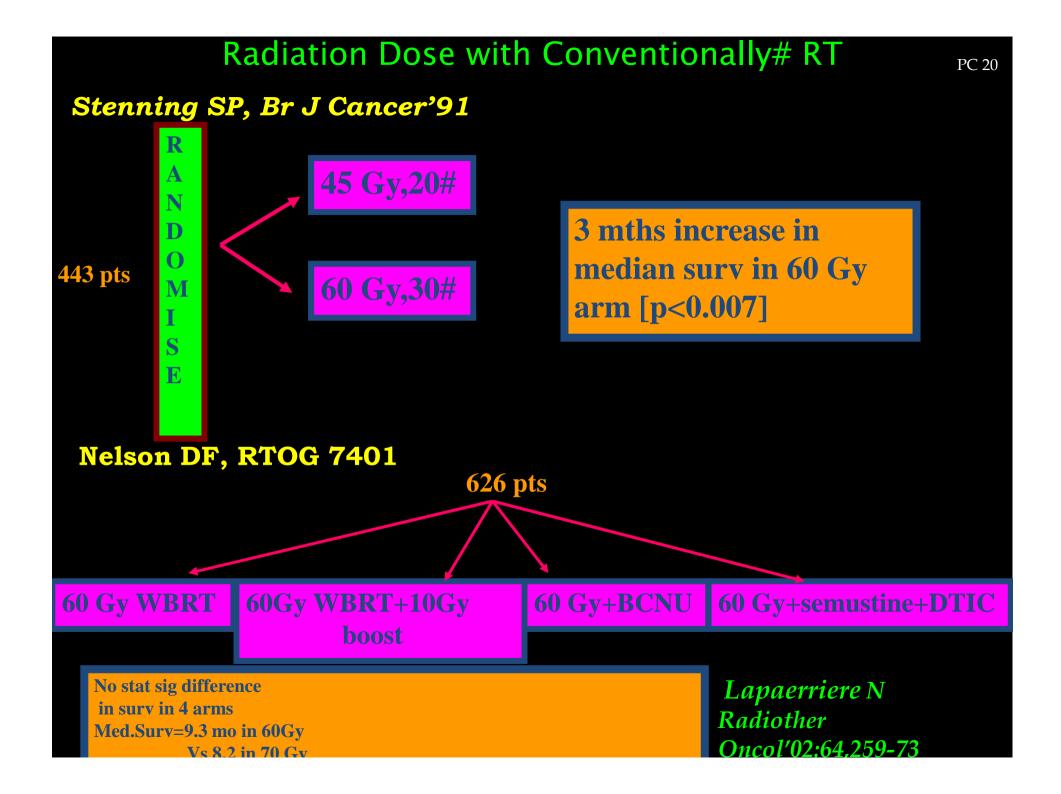
Improvement of progression free survival but No change in survival (? Due to better effect of salvage RT)

RT in Malignant Glioma

Study	Post-operative		No Post-		Risk Ratio for 1-year	95% Confidence	
	Radiotherapy		operative		Mortality	Inter	val
	Deaths	Total	Deaths	Total	(Ran 40m Exects)	Low	High
Shapiro, 1976 (62)	12	17	10	16	1.13	0.69	1.84
Andersen, 1978 (1)	44	51	57	57	0.86	0.77	0.97
Walker, 1978* (78)	52	68	30	31	0.79	0.68	0.92
Walker, 1980 (79)	74	118	82	111	0.85	0.71	1.01
Kristiansen, 1981 (36)	51	80	35	38	0.69	0.57	0.84
Sandberg-Wollheim, 1991 (60)	34	84	50	87	0.70	0.51	0.97
	007						
TOTAL	267	418	264	340	0.81	0.74	0.88


^{*} Only results for the evaluable patients were reported.

Laperriere N Radiother Oncol'02


Favours Post-operative RT ≈ ■ Favours No Post-operative RT

overall risk ratio (0.81 0.5% CI, 0.74 to 0.88; p<0.00001).

Chemotherapy in Adult High-Grade Glioma: Meta-Analysis

- Glioma Meta-analysis Trialists Group. *Lancet* 2002: 359: 1011-1018
 - Individual patient data
 - 3004 patients, 12 randomized controlled trials (RT + chemotherapy *versus* RT)
 - Hazard ratio: 0.85 (.78-.91, *p*<0.001)
 - 15% relative decrease in risk of death
 - 6% increase in 1-year survival (40% to 46%)
 - 5% increase in 2-year survival (15% to 20%)
 - 2 month increase in median survival

RT Volume: RCTs

Shapiro etal, Arch Neurol'76

No stat sig difference in survival in both arms

Kita etal, Gan No Rinsho'89

R A N D O M I S E

40 Gy/20# WBRT f/b 18 Gy/9# boost = 23 pts

56 Gy/28# Focal RT = **26** pts

No stat sig difference in survival rate

Laperriere N Radiother Oncol'02:64,259-73

	RT (n=286)	RT/TMZ (n=287)	p-value
Age, median (range) [years]	56.6 (23.1-70.8)	55.7 (19-70.5)	NS
Tumor resection	70 %	68%	NS
WHO PS: 0/1/2	39% / 49% / 12%	39% / 48% / 13%	NS
Steroids at baseline	75 %	67%	p=0.041
Progrfree surv. (95% c.i.)	5.0 mo (4.2-5.5)	7.2 mo (5.8-8.3)	p<.0001
Median survival (95% c.i.)	12 mo (11.2-13.2)	15 mo (13.6-16.8)	p<.0001
2-year survival (95% c.i.)	8% (4-12%)	26% (20-32%)	p<.0001

CT + RT**TERMOZOLAMIDE**

n = 573

G.B.M.

85 Institution median age -65

Arm A – RT (n = 286)

Arm B – RT + Canc Tm_2 + adj Tm_2 (n=287)

CT-

Canc Tm_2 - 75mg/m²(maxm – 49 days)

Adj Tm₂- 200mg/m² 6 cycles (at 28 days int)

RESULT –

Median follow up 28 mo

	RT	RT+TM ²	Р
Median over all survival	12.1m0	14.6 mo	<.001
2 yr O.S	10.4%	26.5%	
Median time to progression	5.6 mo	6.9 mo	<0.001
Drug related toxicity	0%	16%	

HIGH GRADE GLIOMA **ISSUES**

- DOES POST OP RADIATION IMPROVES THE SURVIVAL:-YES.STANDARD OF CARE
- WHAT SHOULD BE THE DOSE OF RADIATION:-60GY
- WHETHER WHOLE BRAIN OR FOCAL RADIATION:-*NO WHOLE BRAIN RT*
- WITH DOSE ESCALATION SURVIVAL IMPROVES:-NO
- POST OP RADIATION+CHEMOTHERAPY DOES IT TAKE HOME MESSAGE:-1 IMPROVES THE SURVIVAL:-YES

Head & Neck Cancer

Heterogeneous group of tumor.

Significance:

- Different anatomical site :-
 - Different tumor kinetics, different biological behavior.
- Proliferation of cells not similar in all sites.
- Treatment outcome: Differs.

General guidelines for selecting a treatment modality:

- •Stage I / II disease- Single modality (Surgery or RT)
- Stage III & IV disease -- Combined modality
 Surgery + Radiotherapy (In most patients),
 Chemotherapy + radiotherapy (In selected patients)

When different modalities are available, the modality that gives maximum chance of cure should be used.

When different modalities have similar results, a modality that gives better quality of life, with organ / voice preservation, Functional and cosmetic results is preferred

SURGERY VS RADIOTHERAPY

Surgery is preferred over radiotherapy as a single modality in

- 1. Young patients -due to high incidence of second primary
- 2. Sub mucous fibrosis
- 3. Lesions involving or close to bone to prevent radionecrosis.
- 4. Sites where surgery is not morbid (cosmetically and functionally)

RT is preferred over surgery as a single modality, where

- 1. Severe impairment of function / cosmesis with surgery.
 - 2. Surgery has high morbidity and poor results e.g. nasopharyngeal carcinoma.
 - 3. Patient refuses surgery / high risk of surgery

Radiotherapy

External beam radiotherapy and / or brachytherapy are used either as a single modality or as a part of multi-modality treatment. Radiotherapy is used in 3 different settings

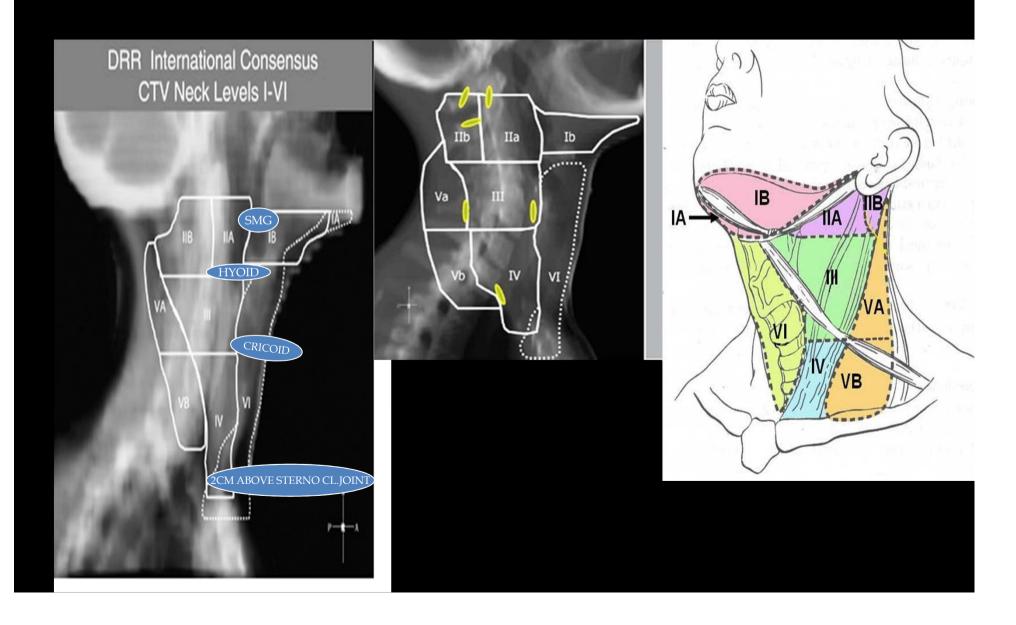
- Radical curative radiotherapy(Alone/combn.with C.T)
- Post-operative adjuvant radiotherapy
- Palliative radiotherapy

Indications for Brachytherapy (BRT):

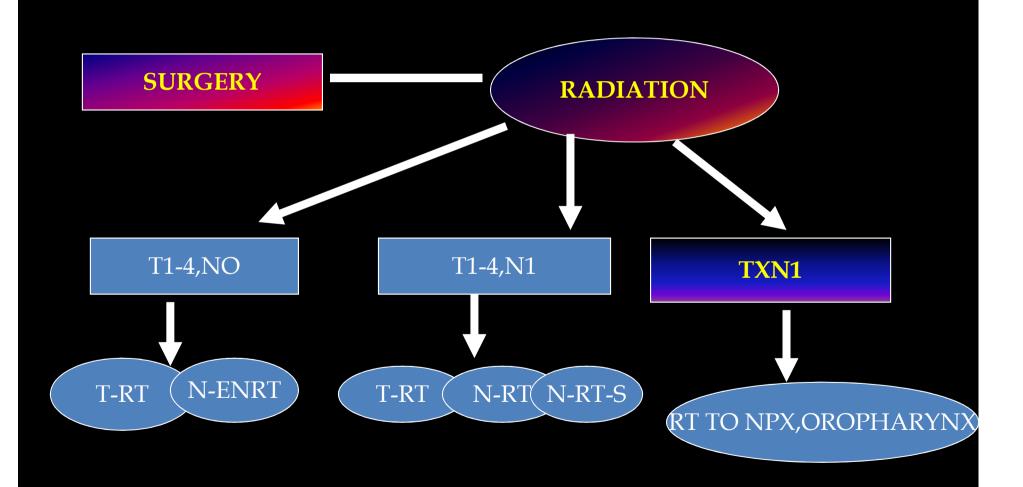
- Accessible lesions
- Small (preferably < 3cm) tumours
- Lesions away from bone
- •N0 nodal status

Tumour suitable for brachytherapy

- •T1-2 N0: Radical BRT: 60-70Gy Low Dose Rate 192Iridium Or equivalent doses with fractionated high dose rate.
- •T1-3 N0-1: External RT: 56-60Gy/ 28-30#/ 6 wks


Boost BRT: Low dose rate 192Iridium: 15-20Gy or

High Dose Rate: 14Gy in 4 fractions over 2 days (4-3-3-4 Gy)


Tumours not suitable for brachytherapy:

- •T1-4 N0-2: Concomitant Chemoradiation: 66-70Gy/33-35# /6-7 wks + concomitant weekly Cisplatinum, 30mg/m2 for 6-7 wks Or
- •External RT: 66-70Gy/33-35# /6-7 wks (reducing fields)

Digital reconstructed radiograph (DRR) levels I-VI. CTV, clinical target volume.

MANAGEMENT OF NECK NODE

PATIENT IN WHOM THE PRIMARY LESION TO BE TREATED BY RADIATION, WHO HAVE CLINICALLY -VE NODES AND WHOM THE RISK OF SUBCLINICAL DISEASE IS 20% OR GREATER, USUALLY RECEIVE ELECTIVE NECK RT OF 45-50Gv

Table 46	.2 DEFINITION OF	RISK GROUPS	
Group	Estimated Risk of Subclinical Neck Disease %	Stage	Site
I Low risk	<20	T1	Floor of mouth, retromolar trigone, gingiva, hard
II Intermediate risk	20-30	T1 T2	palate, buccal mucosa Oral tongue, soft palate, pharyngeal wall, supraglottic larynx, tonsil Floor of mouth, oral tongue, retromolar trigone,
III High risk	>30	T1-4 T2-4 T3-4	Nasopharynx, pyriform sinus, base of tongue Soft palate, pharyngeal wall, supraglottic larynx, tonsil Floor of mouth, oral tongue, retromolar trigone, gingiva, hard palate, buccal mucosa
From Mendenhall WM, Million RR. Elective neck irradiation for squamous cell carcinoma of the head and neck: analysis of time—dose factors and causes of failure. Int J Radiat Oncol Biol Phys 1986;12:741—746, with permission.			

• OROPHARYNX,NASOPHARYNX,SUPRAGLOTTIC LARYNX AND HYPOPHARYNX-LOWER NECK NODE WITH SINGLE ANT FIELD

IN +VE NECK NODE

• ADVANCED DISEASE HAS BETTER CHANCE OF CURE WITH ALTERED # /CONCOMITTANT RT

•

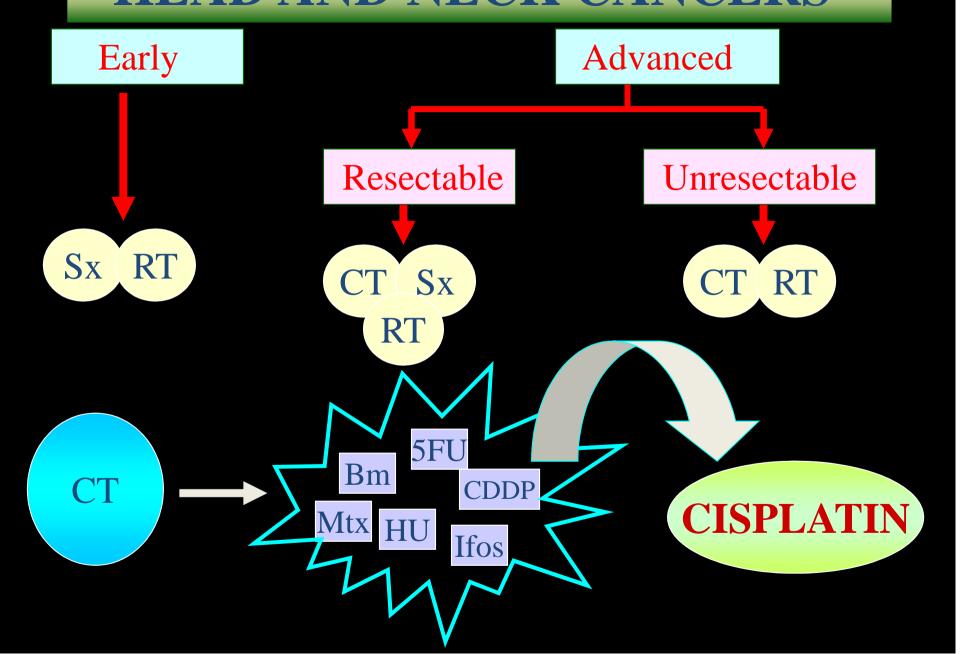
NODE SIZE AND DOSE OF RADIATION BEFORE SURGERY

NODE SIZE	DOSE OF RT
3-4 cm,MOBILE	50GY
5-6CM,FIXED	60GY
7-8 CM	70-75GY

TIME OF SURGERY:-4-6 WKS AFTER RT.INITIAL REGRESSION IS SLOW.

MUCH REGRESSION AT 4-6 WKS

CERVICAL L.N METASTSIS WITH UNKNOWN PRIMARY


UPPER NECK NODE METASTASIS:-PROGNOSIS BETTER THAN LOWER NECK

ADENO CA.OF NECK NODE, PRIMARY:-BELOW THE CLAVICLE IF UPPER NECK:-SALIVARY GLAND, PARATHYROID, THYROID

DIAGNOSIS:-CLINICAL EXAMINATION, DL BIOPSY, NEEDLE BIOPSY, CT, MRI, FDG PET

- TREAT INVOLVED AREA OF NECK
- RT TO NASOPHARYNX, OROPHARYNX, BOTH SIDE OF NECK
- ORAL CAVITY, LARYNX AND HYPOPHARYNX TO BE EXCLUDED

HEAD AND NECK CANCERS

SURGERY Vs S+RT

Treatment	Ipsilat neck failure (No −N₃b)	Contralat neck failure (No –N ₃ b)
Surgery	51/199 (25.6%)	35/130(27%)
Radiation	54/292(18.5%)	7/172(4%)
Combined	8/105 (7.8%)	3/85(3%)

Barkley et al A.J.Surg 124 : 462-467,1972

(Post operative RT eleminated subclinical disease after surgery in both Ipsilat neck as well as Contralat neck)

But no comment on survival.

Resectable Head & Neck Cancer Pre Vs Post op RT RTOG 73 - 03

Estimated 4 yr Locoregional control percentage hy Rx & Region

Site	Pre op (%)	Post op (%)	Total (%)
Oral cavity	40	44	42
Oropharynx	47	61	54
Supraglottic Larynx	53	77	64
Hypopharynx	50	61	55
All Regions	48	<u>65</u>	57
For 194 pts who competed planned t/t	56	74	

POST OF RADIATION IS THE STANDARD OF CARE

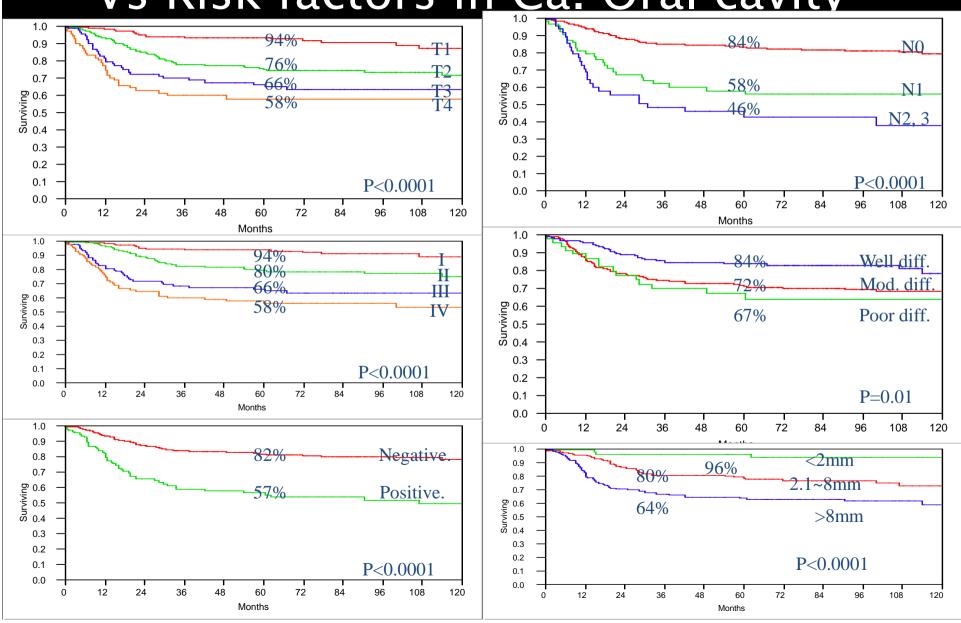
Risk stratification in post op setting in H&N Cancer

HIGH RISK FACTORS:

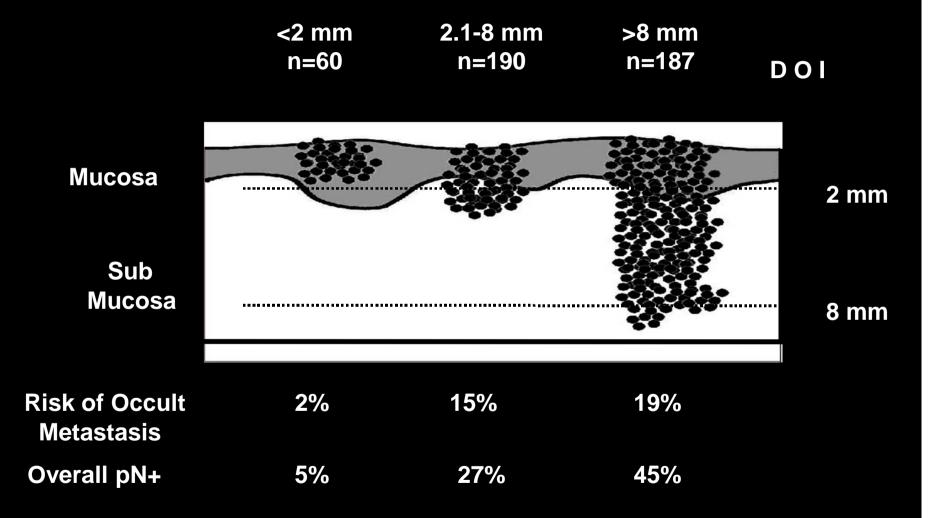
Extracapsular Extension Of Nodal Disease ≥2 of the following factors

- o Oral cavity site
- o Microscopicaly positive mucosal margins
- o Nerve invasion
- o ≥ 2 involved neck nodes
- o > 1 positive nodal group
- o Node size>3 cm

INTERMEDIATE RISK FACTOR:


No ECE

One of the above risk factor


LOW RISK FACTOR:

None of the above factor

Disease-Specific Survival Vs Risk factors in Ca. Oral cavity

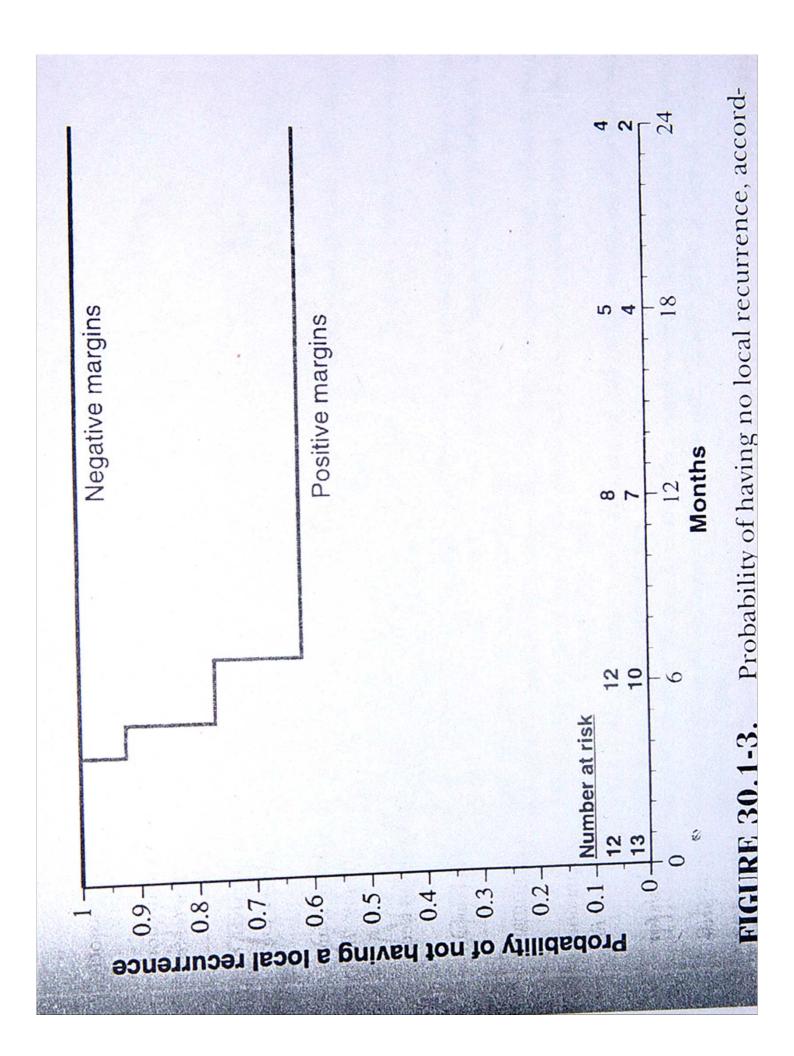
Depth of Invasion

Fukano et al. 34 pts,

For tumor thickness

- <5mm, 1/17 : 5.8%,
- >5mm, 11/17 : 64.7%,
- <3mm, no cervical LN,

p=0.0003


Shah et al: depends on relation of the thickness of primary tumor with cervical nodal mets

- 2 mm or less: 13%
- 2-9 mm : 46%
- >9mm:65%

Bayers et al: SCC of tongue, T1 to T4 with clinical node-ve

- <4mm depth : 31%
- 4-8mm: 47%
- >8mm:76%

p = 0.0001

Early Disease (Stage I, II) - Monotherapy
 Surgery or Radio-therapy

NOOOOOOOOOO

Risk factor & Radiation Dose

- ECE the single most independent variable
- 2/more risk factors are associated with higher risk of recurrence
- No adverse surgical- pathologic features:- No PORT .5yr LRC and survival 90% & 83% with surgery alone.
- One adverse feature & ECE 57.6 Gy 5 yr TRC-94%
 - INT. RISK
- Highrisk (ECE, 2/more adv. Features) 63 Gy
 5yr LRC 68%

Peter L J et al I.J.R.O.B.P, 1993: 26(1):p 3-11

CONCURRENT CT RT IN HIGH RISK PATIENTS

	#pt	F/U	LC	LRC (CTRT Vs RT)	DFS (CTRT Vs RT)	Survival (CTRT Vs RT)
RTOG 9501 [31]	459	46 month median	Not reported	80% vs 68%	33% vs 25%	42% vs 36%
				P = 0.003	p =0.04	P = 0.19
EORTC 22931 [30]	334	60 month median	Not reported	82% vs 69%	47% vs 36%	53% vs 40%
				P = 0.007	P =0.04	P = 0.02
Bachaud (1996) [29]	83	5 year minimum	84% vs 59%	Not reported	68% vs 44%	72% vs 46%
			P=0.05		P<0.02	P < 0.01

CDDP-100MG/M2 AT 3 WEEKS INTERVAL EBRT:-66Gy

- The survival benefit seen in CT & RT arm are due to Improved loco regional control
- 10% IMPROVEMENT IN 2YR LOCOREGIONAL CONTROL IS PREDICTED TO LEAD TO 6.7% 5YRS INCREASE IN OVERALL SURVIVAL (Wadsley et al,IJROBP-2004)
- Cisplatinum based concurrent chemo-radiation should be considered for high risk pts that are medically able to tolerate concurrent CT

Time factor in PORT setting.

- Timing:- within 6wks of Post OP.
- Duration of Rx Vs 5yrs acturial LRC

< 11 wks – 5yrs LRC-76%

11-13 WKS -62%

> 13 WKS - 38%

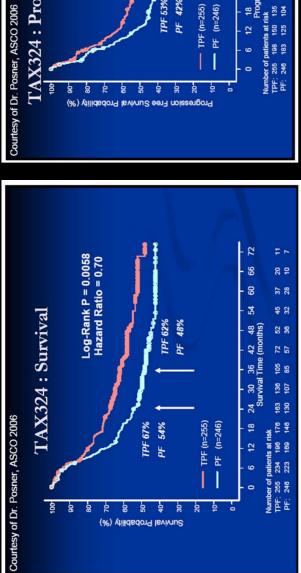
Ang KK 51: 571-78,2001

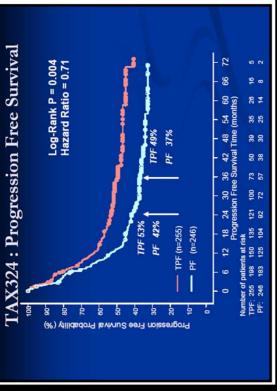
Treatment strategy in post op Head & Neck Cancer

- Low Risk → No adv. Factor Obs
- Int Risk → One risk factor

No ECI – RT

• High Risk \rightarrow 2 risk factor


& ECI - CT+RT. Alt#



Recent Randomized Trials of Induction Chemotherapy followed by Locoregional Treatment versus Locoregional Treatment Alone

Author (Reference	e) Year	No. of Patients	Chemotherapy	Overall Survival
Martin (234)	1990	75	FP	No difference
Jortay (235)	1990	187	VBM	No difference
Richard (236)	1991	222	VB(IA)	Advantage:
Mazeron (237)	1991	131	FPBM	No difference
Jaulerry (238)	1992	100	PBVdMi	No difference
Jaulerry (238)	1992	108	FPVd	No difference
Tejedor (239)	1992	42	CpFt	No difference
Depondt (240)	1993	324	FCp	No difference
Di Blasio (241)	1994	69	FP	Advantage: standard

Tax 324: Response

Chemotherapy	TPF (N=255)	PF (N=246)	
Overall RR [95%CI]	72% [65.8 – 77.2]	72% [65.8 – 77.2] 64% [57.9 – 70.2] p= 0.07	p= 0.07
Complete RR [95%CI] 17% [12.1 – 21.6] 15% [10.8 – 20.1] p= 0.66	17% [12.1 – 21.6]	15% [10.8 – 20.1]	p= 0.66

Chemotherapy and CRT	TPF (N=255)	PF (N=246)	
Overall RR [95%CI]	77% [70.8 – 81.5]	72% [65.5 – 77.1]	p= 0.21
Complete RR [95%CI]	35% [29.4 – 41.5]	28% [22.5 – 34.1]	p= 0.08

Courtesy of Dr. Posner, ASCO 2006

Tax 324 Survival: ITT Population

	TPF - 255	PF - 246
Median Survival (Mo)	70.6 +	30.1
95% CI	49 - NR	20.9 – 51.5
Died *	41%	23%
KM Survival		
1 – Year	80% [75.0 - 84.9]	69% [64.1 – 75.7]
2 – Year	67% [61.5 – 73.2]	54% [48.2 – 60.8]
3 - Year	62 % [55.9 – 68.2]	48% [41.7 – 54.5]
Hazard Ratio TPF:PF [95% CI]	0.70 [0.5	0.70 [0.54 - 0.90]
Log-Rank p Value	0.0	0.0058

*Cut-off: December 3, 2005; The Median Follow-Up is 42 Months

Courtesy of Dr. Posner, ASCO 2006

Current Data for Induction Chemotherapy

- Pignon, et al. Meta-analyses: 63 randomized trials
- Results
- Significant benefit to chemotherapy (10% reduction in hazard ratio of death, 4% absolute advantage in survival at 2 and 5 years)
- CCR: clear benefit
- ICT: no statistically significant benefit in survival and locoregional control (LRC)
- Exception: patients receiving cisplatin and 5FU
- Significantly different from other regimens

Pianon Letal Lancet 2000

Conclusion: Induction Chemotherapy

- CCRT with platinum agents is standard of care
- Meta-analysis favors either high dose cisplatin q 3 weeks or 2 agents in a weekly regimen.
- Sequential IC followed by CCRT vs. CCRT must be examined since a definitive survival advantage has not been demonstrated.
- If IC is used, TPF is better than PF; however, other regimens should be examined which may be less toxic, easier to administer and potentially more effective

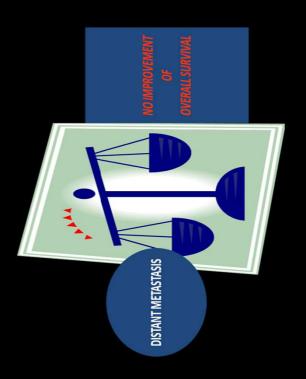
Efficacy of radiation therapy and concurrent chemotherapy in Head & Neck cancer

	French Trial (n = 226)	P	German Trial (n = 270)	P	Nasopharynx Intergroup Trial (n = 193)	P	Duke University Trial (= 116)	P
Local control rate %	66 v 42		35 v 17	<.004	NR	-	70 v 44	.006
Disease-free survival rate,%	42 v 19	.002	NR	1	69 v 24	<.001	60 v 40	.07
Survival rate %	51 v 31	.003	49 v 24	<.0003	78 v 47	.005	42 v 28	.05
Mucositis rate%	67 v 36	-	38 v 16	<.001	NR	-	77 v 75	-

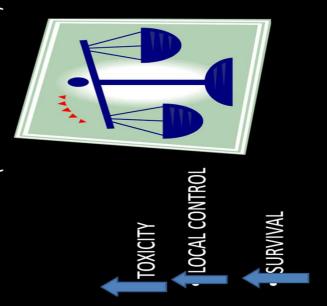
Randomized Trials of Concurrent Multiagent Chemotherapy and Radiotherapy versus Radiotherapy in Stage III and IV Disease

uthor (Reference)	No. of Pati	ients	Study Population	Chemotherapy	Radiothe	erapy L	ocal Region	al Control (P) Survival (P)
Keane, 1993 (299) Zakotnik, 19		64	arynx and hypopharynx Unresectable	MMC, Bleo		split 70 Gy		. 29% (.007)	% vs. 40% 38% vs. 10% (.019)
Adelstein, 199	9 (301,302)	100	Resectable	Cisplatin, 5-FU	60	Gy, split	7% vs. 4	45% (<.001)	42% vs. 34% (<.01)
Calais, 199	9 (303)	226	Oropharynx	Carbo, 5-FU	ı :	70 Gy	66% vs	s. 42% (.03)	51% vs. 31% (.02) (3-y)
Merlano, 1	996 (304)	157	Unresectable	Cisplatin, 5-l		0-70 Gy	64% vs.	. 32% (.038)	24% vs. 10% (.01) (5-y)
					(alternatir	ng)			
Adelstein	2000 (305)	295	Unresectable	Cisplatin		70 Gy		(.016	37% vs. 20% (3-y)
				Cisplatin,	5-FU	60-70 Gy,	split		29% vs. 20 (.13) (3-y)
Wendt, 199	8 (306)	270	Unresectable	Cisplatin, 5-	FU, L 7	70 Gy, b.i.d.,	split 36%	vs. 17% (<.0	04) 48% vs. 24 (<.0003) (3-y)
Brizel, 1998	(307) 11	16	Resectable and	Cisplatin, 5 unr	-FU esectable	70-75, Gy ł	o.i.d. 70%	vs. 44% (.0	1) 55% vs. 37 (.07) (3-y)

Status of Con. CT &RT


Metaanalysis

- Absolute Survival benefit at 5 yrs 8%
- CDDP alone is as good as Poly chemotherapy
- Effect of Chemotherapy decreases with Age
- Significant toxicity.


CONCLUSION-Concurrent CTRT

- RT+CT(concurrent) LRC, IFS, OS
- MONOCHEMOTHERAPY using Cisplatinum seems give better overall result
- No consensus regarding optimal radiation –dose fractionation
- Acute toxicities with use of concurrent CT & RT is high, so can considered IMRT
- Recommended as standard of care in Locally advanced H&N cancer.

NEOADJUVANT CT

OUTCOME VERSUS TOXICITY(CONCURRENT CTRT)

Meta-Analysis of Chemotherapy in H&N Cancer (MACH-NC)

- Analyzed 63 randomized trials, 1965 1993
- Locoregional Rx +/- chemotherapy
- Updated individual patient data
- Total of 10,741 patients

Lancet 355:949-955, 2000

CHEMOTHERAPY IN ADVANCED HEAD & NECK **CANCER-OVERALL SURVIVAL**

REGIMEN ABSOLUTE RISK REDN p

BENEFIT-5YRS

ADJUVANT 1%

2+/-7%

NS

NEO ADJUVANT. 2%

5+/-3%

NS

CONCOMITANT

8%

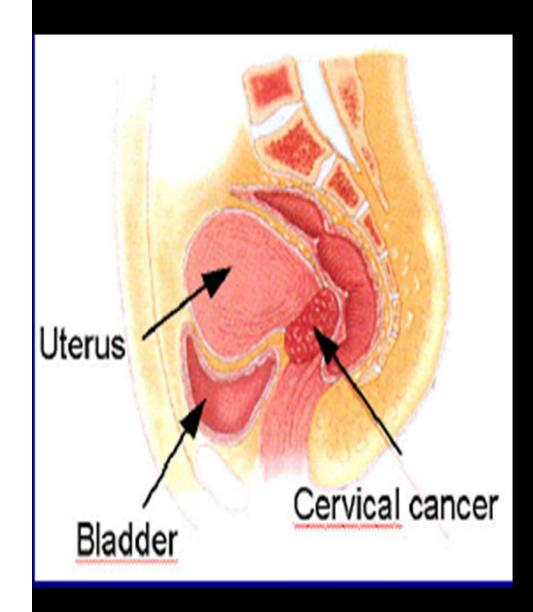
19+/-3%

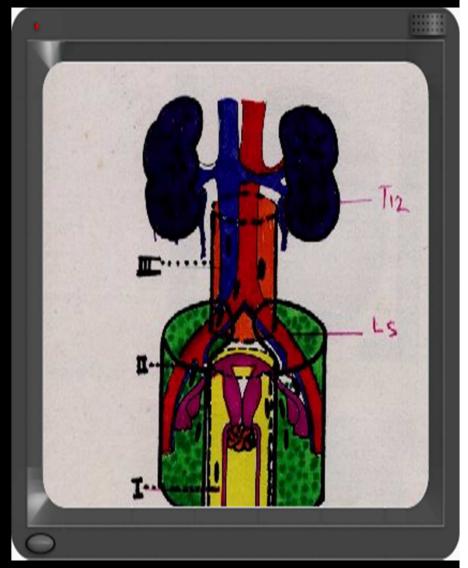
<.0001

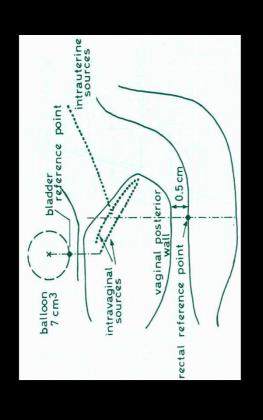
TOTAL

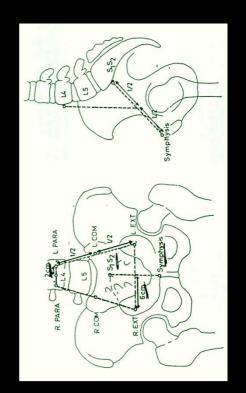
4%

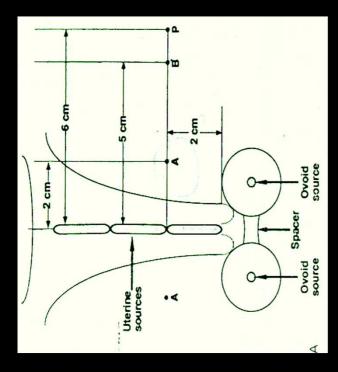
11+/-2%

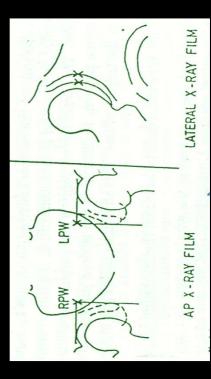

<.0001


TAKE HOME MESSAGE


- S+RT IS THE ACCEPTED MODALITIES OF
 TREATMENT IN ADVANCED HEAD & NECK
 CANCER
- ORGAN PRESERVATION :-CT + RT CAN BE TRIED
- CONCOMITTANT CT+ RT IS BETTER IN TERMS OF SURVIVAL THAN NEOADJUVANT CT.
- MULTI AGENT CT CAN BE TRIED IN CONCOMITTANT SETTING
- HIGH RISK POST OP SETTING CAN CONSIDER CT + RT FOR BETTER LOCOREGIONAL CONTROL
- RECURRENT CA CAN TRY REIRRADIATION + CT




CARCINOMA CERVIX



FIGO Staging System (clinical)

• Stage I: confined to the cervix IA microscopic only (IA1 <3mm/IA2 <5mm)
IB visible lesion or microscopic > IA IB1 < 4cm diameter IB2 >4cm diameter Stage II: beyond cervix but not to pelvic sidewall.
 IIA extension to upper 2/3 vagina (no parametrial involvement)
 IIB extension into parametria
 Stage III: IIIA lower 1/3 vagina IIIB extension to pelvic sidewall, hydronephrosis Stage IV: IVA invådes blådder or rectal mucosa IVB distant metastases Lymph node involvement \(\) with Stage. Nodal involvement is not part of staging system

STAGE ID & IIa TREATMENT

Wertheim's Hysterectomy
Or
Radical radiation therapy

(Ext + Brachy)

Choice of treatment determined by age, menopausal status, ovarian preservation, comorbid conditions, patient's wish & availability of expertise in surgery & RT

(NIH Guidelines 1997)

Risk Stratification (GOG Guidelines)

Deep stromal invasion Large tumor diameter(>4cm) >Intermediate LVSI

risk (Any two)

Positive nodes Positive surgical margins Positive parametria

High risk (Any one)

Stage Ib/IIa Impact of Lymph node Metastases

Survival(%) Relapse(%)

L.N -Ve 95.8 %

L.N +Ve

Pelvis 63.5% 32%

P.A 40.8% 57%

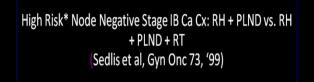
Pelvis+PA 18.4% 73.7%

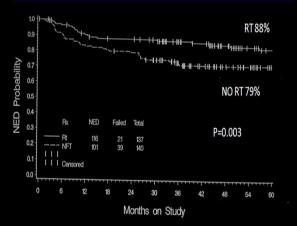
Early Stage Carcinoma Cervix Intermediate Risk: Role of Adjuvant therapy

GOG 92: RCT (Gynae Oncol 73;177-183: 1999)

Outcome	No Adj RT N = 140	Adj RT N = 137	p value
2 yr RFS	79%	88%	.008
2 yr OAS	79%	87%	.008
Pelvic rec	21%	13%	
Dist mets	7%	2%	

Risk of Recurrence reduced by 44% (RR 0.56.p=0.01°)


"Grade A"


Mortality reduced by 36% (p=.005). ADJUVANT PELVIC RT IS BENEFICIAL

Early Stage Carcinoma Cervix High Risk: Role of Adjuvant Therapy

Intergroup 0107 RCT Trial (*Gynae Oncol 73 ;177-183: 1999*)

Outcome	PORT N = 116	POSTOPCT+RT N = 127	p value
4yr RFS	63%	80%	0.01
4yr OAS	71%	81%	0.01
Pelvic rec	17%	6%	
Distant mets	11%	7%	
Pelvic+ distant	4%	3%	

Defined a specific subgroup of patients with intermediate risk factors who are benefited from pelvic RT though at cost of increased toxicity

CHEMO-RADIATION SHOULD BE STANDARD OF CARE

"Grade A"

Latest news from SGO, 2004 (1)

A re-analysis of SWOG 8797 benefit of PO concurrent CRT

limited to those with

- Tumors > 2 cm,
- •> 2 positive LN,
- Parametrial extension

Im et al. Abstract 8. Proc. to 35th *annual meeting Society of Gynecologic Oncologists* 2004.

Peters J. Clin. Oncol. 2000;18:1606-1613

STAGE Ib & Ila WARTHIEMS **HYSTERECTOMY** BULKY DISEASE :-RT/CT RT LOW RISK INT. RISK HIGH RISK CHEMORADIATION RADIATION **OBSERVATION**

Concomitant

chemo radiation (weekly cisplatin)/Radical Radiation

NATIONAL CANCER INSTITUTE CLINICAL ANNOUNCEMENT

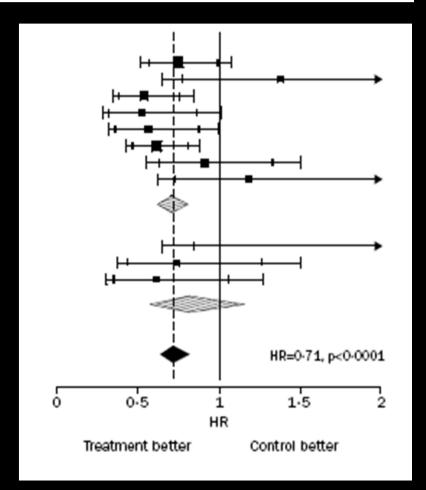
'CONCURRENT CHEMORADIATION FOR CERVICAL CANCER'

in February 1999

"Five major randomized phase III trials show that platinum based chemo when given concurrently with RT prolongs survival in women with locally advanced cervical cancer stages Ib2 - IVa as well as in women with stage I / IIa found to have metastatic pelvic lymph nodes, positive parametrial disease and positive surgical margins at the time of primary surgery

"Grade A"

Concurrent Chemoradiation Results of Meta-analyses


Cochrane Collaborative Group (19 Trials) (4580 patients)

Green JA et al Lancet 358;781 (Sept. 2001)

- 19 RCTs between 1981 and 2000: 4580 randomized patients
- Increase in OAS by 12% & RFS by 16% (absolute benefit) (p=0.0001)
- Greater benefit in patients in stages IB2 and IIB
- Decrease in local and systemic recurrence (p=0.0001)

Update in July 2005: 21 trials and 4921 pts

- Similar findings (absolute benefit: 10%)
- Test for Heterogeneity: Positive
- No data on late toxicities

Cochrane Database Syst Rev. 2005 Jul 20;(3):CD002225.

Green et al meta-analysis on concurrent chemoradiation: *update*

Review strongly suggests that concomitant chemoradiation improves OS and DFS whether or not platinum was used with absolute benefits of 10% and 13% respectively.

Chemoradiation in Advanced Carcinoma Cx Results of Meta-analyses

Canadian Group(9 Trials) - 4 year survival data

Lukka et al, Clinical Oncology 14;203(June 2002)

- Cisplatin based Concomitant Chemo-radiation
- Significant improvement in Overall Survival
 - Advanced Stages (Only 30% tumors)
 - Bulky IB tumors (prior to surgery)
 - High risk early disease (post-surgery)
- Toxicites Acute Grade 3/4 Hematological and G.I significantly higher: all short lived
 - 2 deaths due to the toxicities

"Grade A"

No significant late toxicities seen

CANADIAN STUDY

A CLINICAL Trial comparing Concurrent Cisplatinum & Radiation Vs Radiation alone for locally advanced Squamous Cell carcinoma of The cervix carried out by the National Cancer Institute of Canada Clinical trials Group

Pearcy R,etal.Proc.ASCO 2000;19:378

N = 259

Stage III-Iva;32%

Cisplatinum

RT+CT Vs RT 0.90(0.63-1.29)

No benifit

Long term follow up of Potentiation of Radiotherapy by Cisplatinum in Advanced Cervical Cancer

Wong LC,et al, Gynaecol. Oncol 1989;35.159-163

N = 64

Stage IIIA_IIB:30%

Cisplatinum

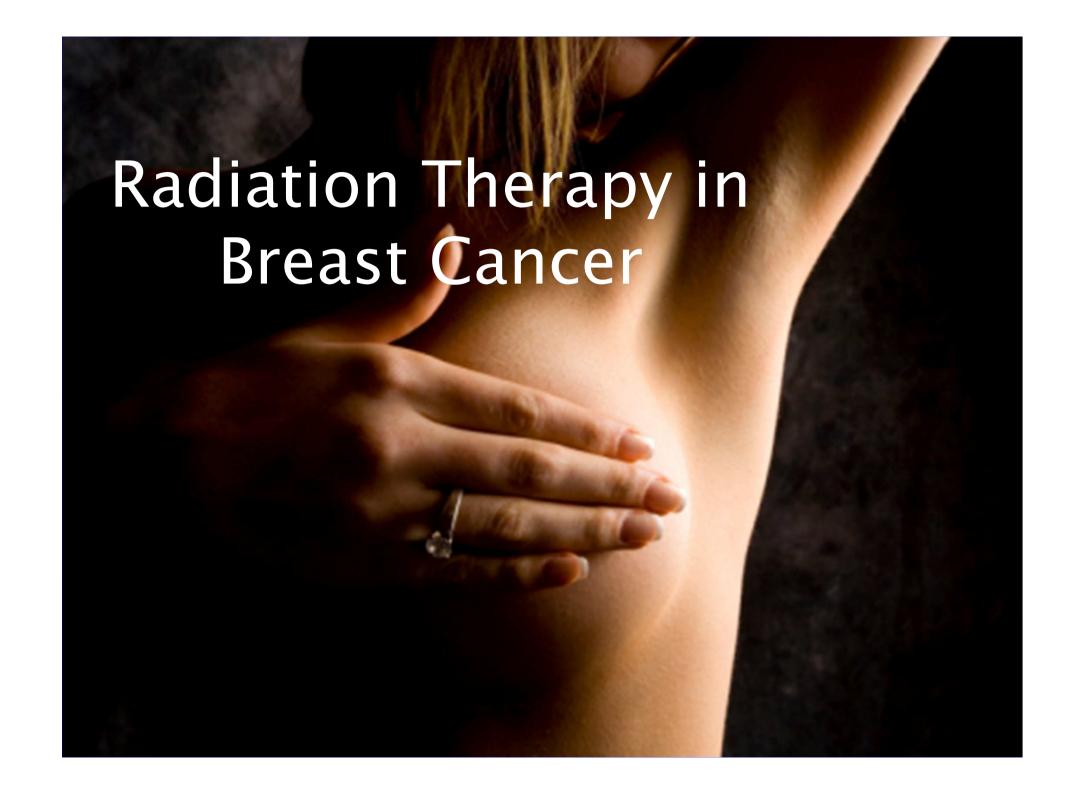
RT+CT Vs RT;-1.04(0.58-1.87)

No benifit

TAKE HOME MESSAGE

Early stages

Post op RT – Inermediate risk group


Post op CT+RT :- High risk group

Concurrent chemoradiation – Bulky stage Ib/Iia

Neoadjuvant CT+ Surgery + RT- Still investigational

Locally Advanced

Concurrent chemoradiation

TNM Grouping and Staging

EBC

- Stage I T1*, N0, M0
- T0, N1, M0
 T1*, N1, M0
 T2, N0, M0
- Stage IIB T2, N1, M0 T3, N0, M0

LABC

T0, N2, M0
T1*, N2, M0
T2, N2, M0
T3, N1, M0

T3, N2, M0

- Stage IIIBT4, N0, M0T4, N1, M0T4, N2, M0
- Stage IIIC**

Any T, N3, M0

MBC

Stage IV Any T, Any N, M1

INDICATIONS

• RADIATION TO INTACT BREAST- BCT

POST MASTECTOMY

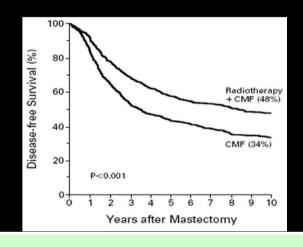
• PALLIATIVE RADIATION

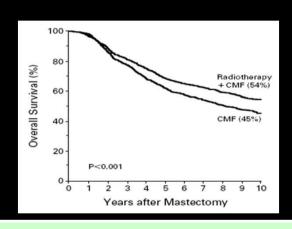
Common Treatment Protocols

Early breast cancer(Stage & II):

Locally advanced Breast cancer (Stage IIIA & IIIB)

IV III A III B NON BCT **BCT** MRM > Chemotherapy> **PALLIATION**)perabl LRRT >Hormn. Th Surgery > RT > Chemotherapy > Hormn. Th Surgery > WBRT > Chemotherapy> Hormn Th Surgery>Chemotherapy>RT>Hormn.Th CT>Surgery CT> LRRT >Hormn.Th CT > MRM> CT> LRRT > Horm. Th CT> RT > CT > Hormonal Th MRM > CT > LRRT > Hormn.Th


INDICATION OF RADIATION IN BREAST CANCER


- Indications of Radiotherapy in EBC
- BCT Radiotherapy forms an integral part of BCT
- Post Mastectomy Radiotherapy
- Chest wall irradiation 1. Positive margins
 - 2. T3 tumors
 - 3. 4 or more + LN in axilla
 - 4. Unknown status
- Axillary irradiation 1. 4 or more + LN in axilla
 - 2. Extranodal disease
 - 3. Inadequate axillary dissection
 - 4. Unknown axillary status

Volume 337:949-955 October 2, 1997 Number 14

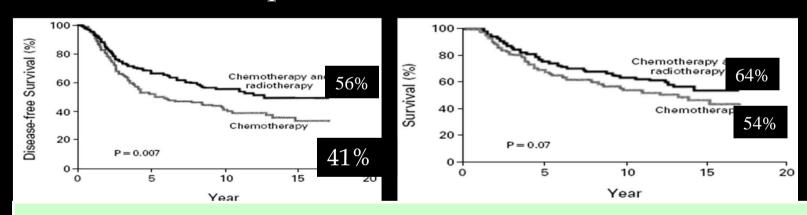
PORT in High-Risk Premenopausal Women with Breast Cancer Who Receive Adjuvant

Chemotherapy

1789 patients, 1982 – 1989, premenopausal, node + or Tumor > 5cm, M0

Total mastectomy, level I + II (partly) + CMF +/-50Gy/25fx (electrons + photons)

Sx in 79 departments, RT in mainly 6 centres


Conclusions: The addition of postoperative irradiation to mastectomy and adjuvant chemotherapy reduces locoregional recurrences and prolongs survival in high-risk

premenopausal women with breast cancer.

Volume 337:956-962 October 2, 1997 Number 14

Adjuvant Radiotherapy and Chemotherapy in Node-Positive Premenopausal Women with Breast Cancer

318 patients, 1979 – 1986, premenopausal, node +, any T, M0

MRM + CMF +/- 37.5Gy/16fx RT (photons) Sx by 'specialists', CT & RT

in one centre

<u>Conclusions:</u> Radiotherapy combined with chemotherapy after modified radical mastectomy decreases rates of locoregional and systemic relapse and reduces mortality from breast cancer.

Post Operative RT

• Fletcher showed the benefits of postoperative LRRT in reducing the nodal recurrence from 20% to <5%, and the chest wall recurrence from 30% to <10%.

•

All RCTs confirmed equivalence of BCT to Mastectomy Early Breast Cancer

	JO ON	Sur	Survival	Local	Local Recurr.
Irial	Patients (Median FU)	MRM	BCT +RT	MRM	BCT + RT
NCI Milan 1973-80	701 (13 yrs)	%69	71%	2%	4%
NSABP-06 1976-84	1444 (12 yrs)	62%	%29	%9	40%
EORTC 1980-86	903 (7 yrs)	75%	75%	%6	13%
Danish 1983-87	905 (6 yrs)	85%	%62	%2	3%

Selected Randomized Trials of Breastconserving Surgery with or without Radiation

					LR	
Study	T, N	No. of Patients	Follow- Up (yrs)	With RT(%)	Without RT (%)	<i>p</i> Value
Fisher et al.	<pre><4 cm node positive/negative</pre>	930	10	12.4	40.9	<.001
Liljegren et al.	<2 cm node negative	381	10	8.5	24.0	.0001
Veronesi et al.	<2.5 cm	579	10	5.8	23.5	<.001
Clark et al.	<2 cm node negative	837	3	5.5	25.7	<.001
Fisher et al.	<2 cm node negative	1,009	8	2.8	16.5	<.001
Winzer et al.	<2 cm node negative	347	5.9	3.2	27.8	<.001

BCS Vs BCS+RT

STUDIES	LOCAL REC	LOCAL REC.	5 YRS.SUR V	5YRS.SUR V	FOLLOW UP
	S	S+RT	S	S+RT	
MILAN	19	2	65	65	18
NSABP	10	8	63	59	12
SWEDISH	18	2	90	91	08
ONTARIO	29	7	85	87	15
SCOTLAN D	16	6	77	75	10

Tumor Bed Boost EORTC data

- BCT for stage I and II breast cancer
- RT to whole breast 50Gy/25#/5wks

p<0.001

Randomized

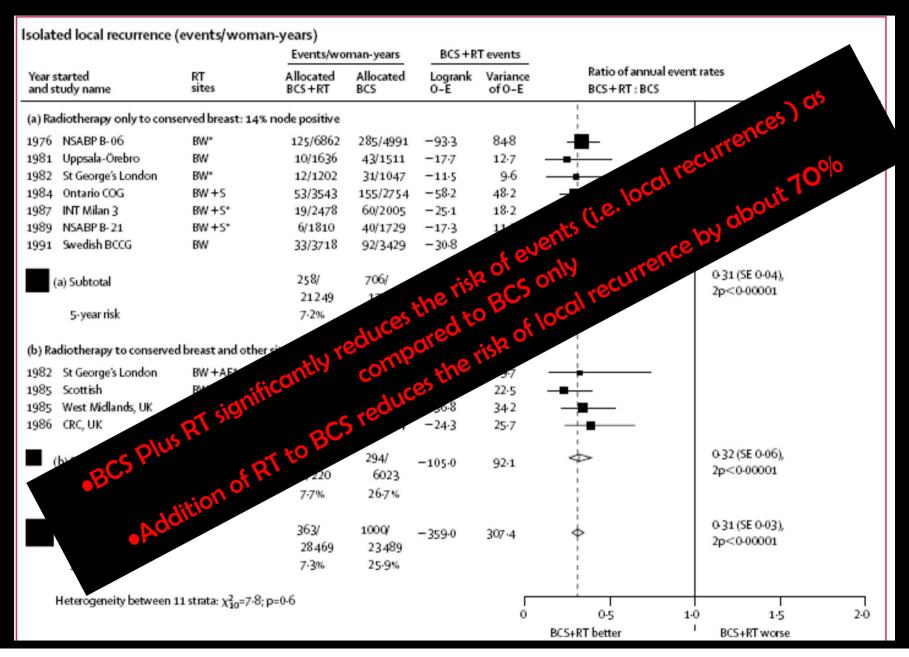
(2657 pts)
no boost
additional 16Gy/8# boost

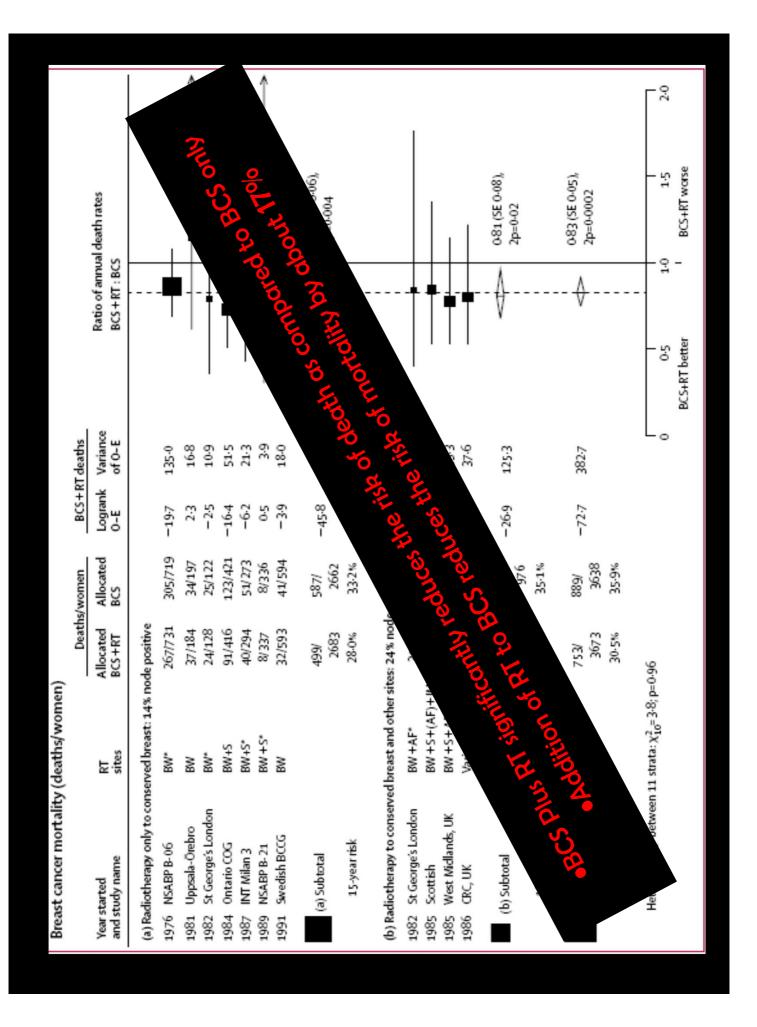
5 yr actuarial rates of local recurrence
7.3%
4.3%

Local recurrences in <40 yrs group

19.5% p=0.002

Boost to the tumor bed Comparison of electron vs implant


	Electrons		Implant			
Study	No of pts	10 yr DFS	Br. Relapse	No of patients	10yr DFS	Br. relapse
Fourquet et al	129	68%	39%	126	78%	24%
Mansfield et al	416	78%	18%	654	76%	12%
Perez et al	490	79%	6%	119	80%	7%
Recht et al	79	-	8%	685	-	9%
Touboul et al	160	85%	15%	169	86%	8%

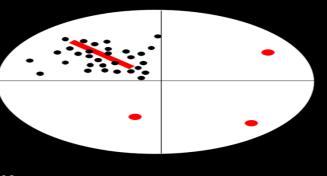

Collaborative Group (EBCTCG) Early Breast Cancer Trialists'

Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials

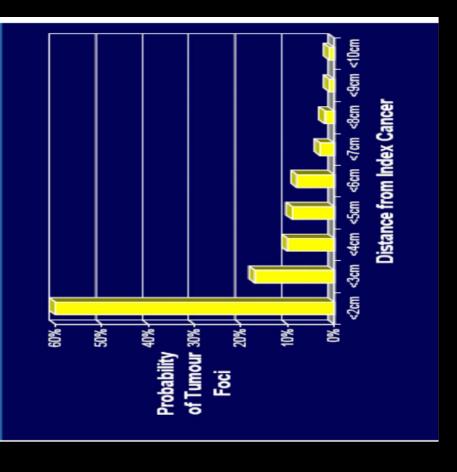
EBCTCG Lancet 2005; 366: 2087-2106

EBCTCG RESULTS

Accelerated Partial Breast Irradiation (APBI)


(shortened course & with larger dose per fraction) appropriate axillary surgery, irradiation of the tumour bed with 1-2 cm margins using a regime of accelerated RT After Wide Excision of Lump &

Why partial breast irradiation?


The vast majority of the recurrence (up to 90%) occurs in the index quadrant Only 1% to 3% recurrence occurs in other quadrant

-- U. Veronesi (Milan III)

Treatment is focused to area of highest risk of residual occult disease/recurrence

T1 & T2 INVASIVE DUCTAL CARCINOMA SELECTED FOR BREAST CONSERVING SURGERY N=217; Holland et al 1985

Patient Selection Criteria

	ABS ¹	ASBS ²	William Beaumont Hospital ³
Age (years)	<u>></u> 45	<u>></u> 50	<u>></u> 45
Histology	Unifocal, IDC	IDC or DCIS	IDC
Tumor size	<u><</u> 3cm	<u><</u> 2cm	<u><</u> 2cm
Surgical margins	Negative	Negative > 2mm	Negative
Nodal status (Axillary/ sentinel)	N0	N0	N0
Cavity to skin distance	Not stated	Not stated	>5 mm

¹ Arthur D, et al. Brachytherapy. 2003

² ASBS Consensus statement for APBI. April 30, 2003

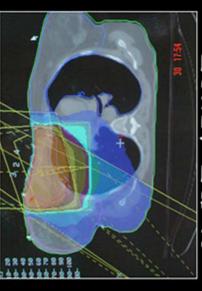
³ Edmundson GK, el al. Int J Radiat Oncol Biol Phys. 2002

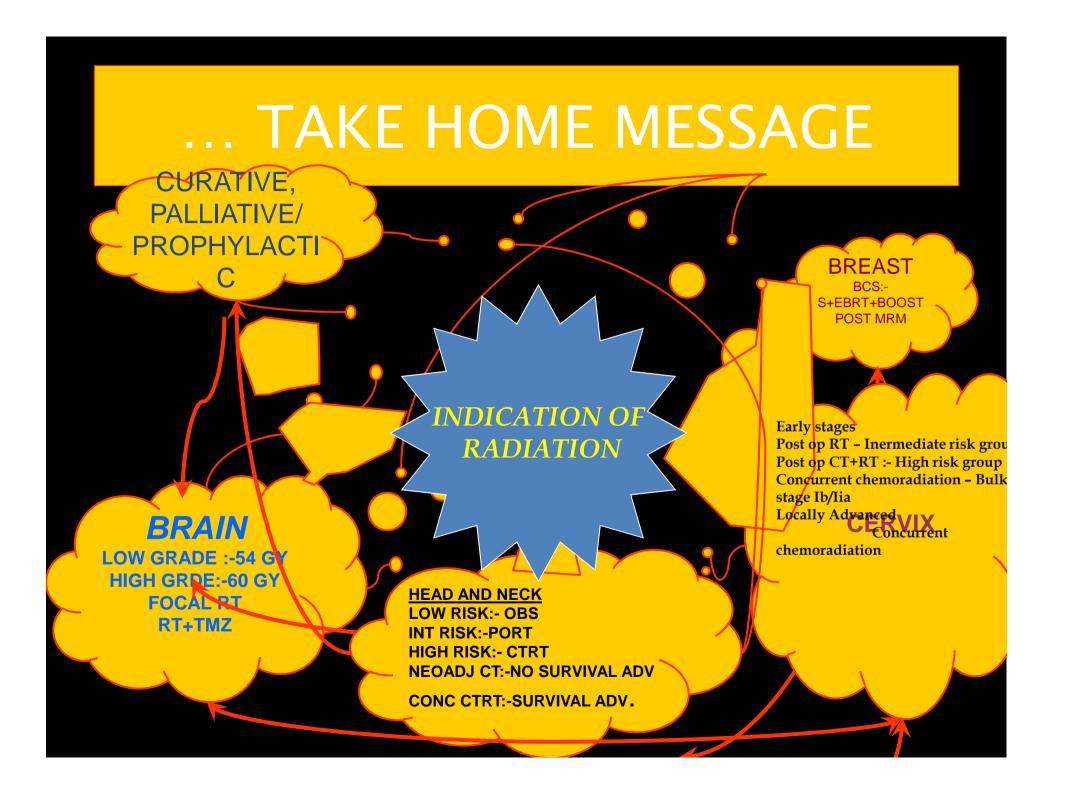
Accelerate Dose

- The smaller tissue volume allows larger fraction sizes and thereby shorter overall treatment time
- Hypo-fractionation schedule decrease the time period
- Radiobiological modeling predicted safety of various dose fractionation schedule

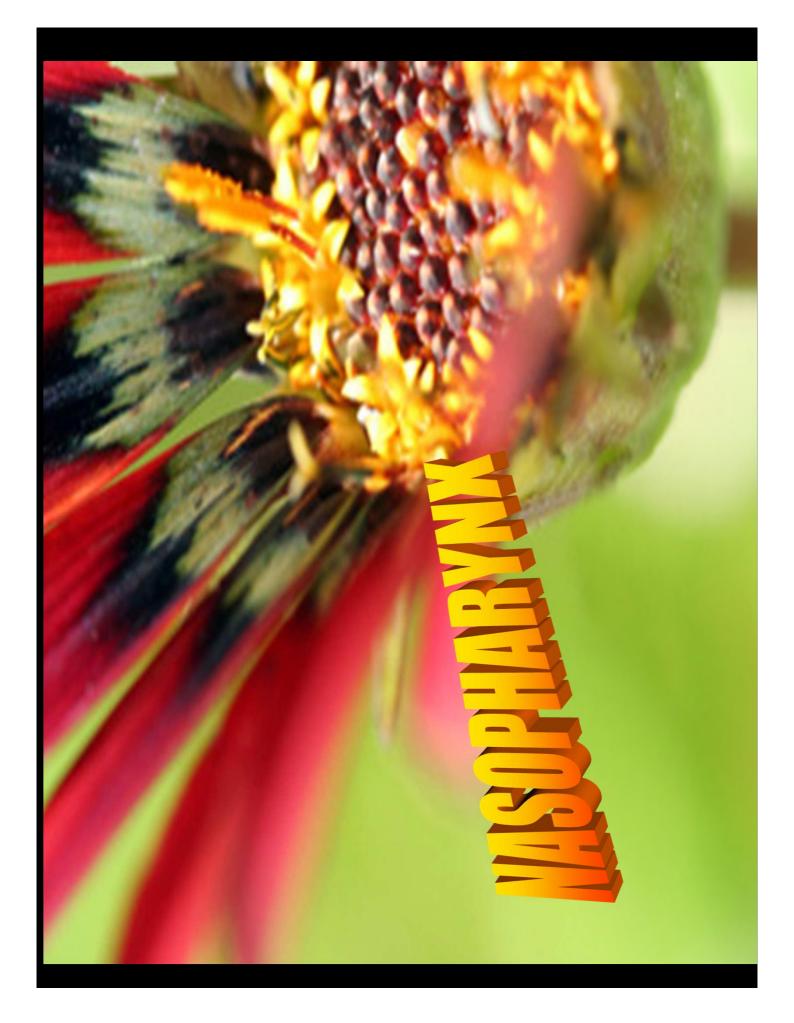
34Gy/10 fr/5 days BD equivalent to 50 Gy 20Gy to 22 Gy Single fraction = 55Gy to 60 Gy

The Options for APBI

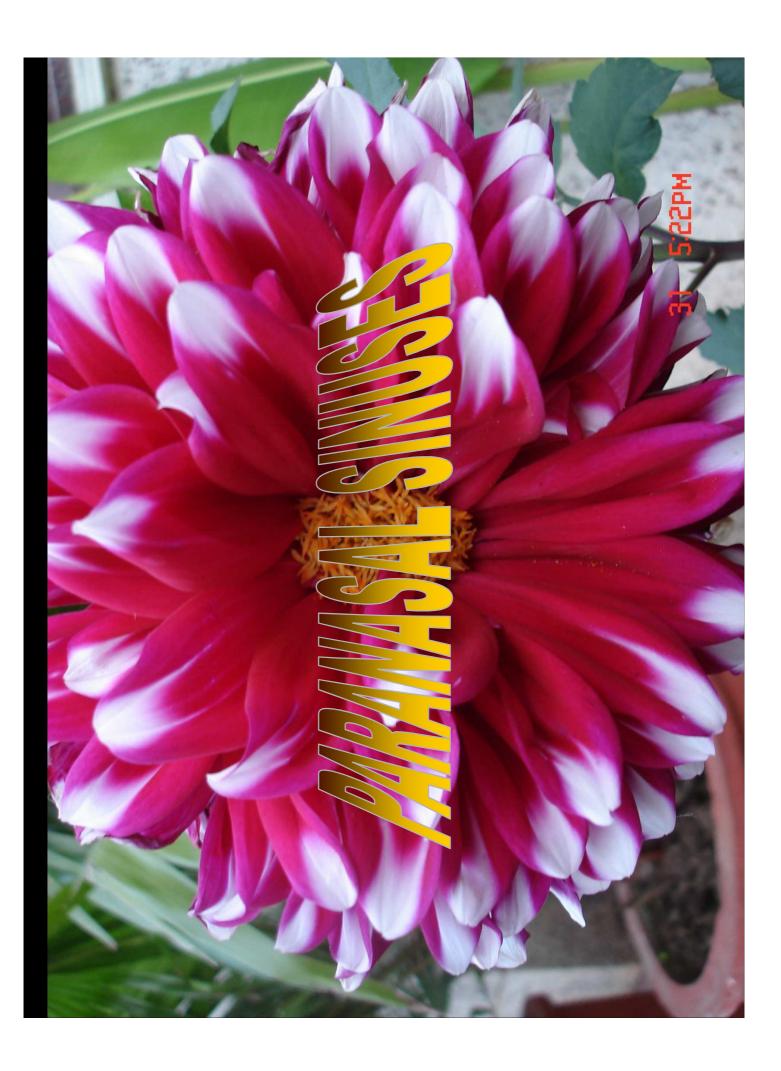

Interstitial Implant

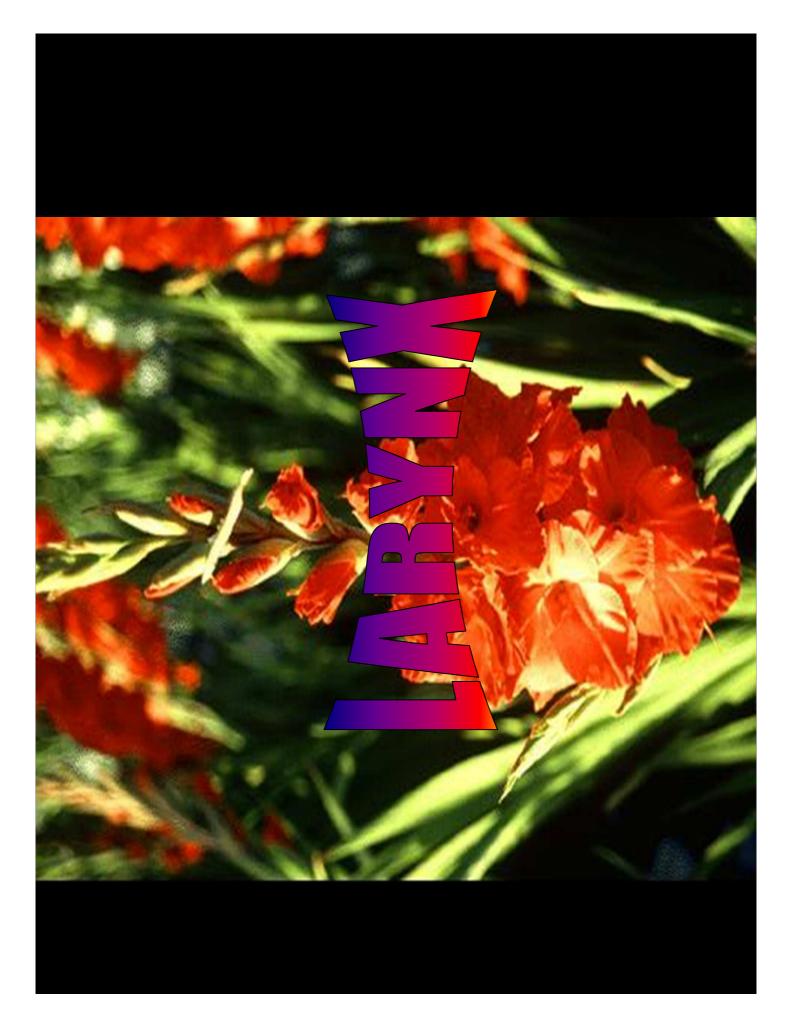

TARGIT

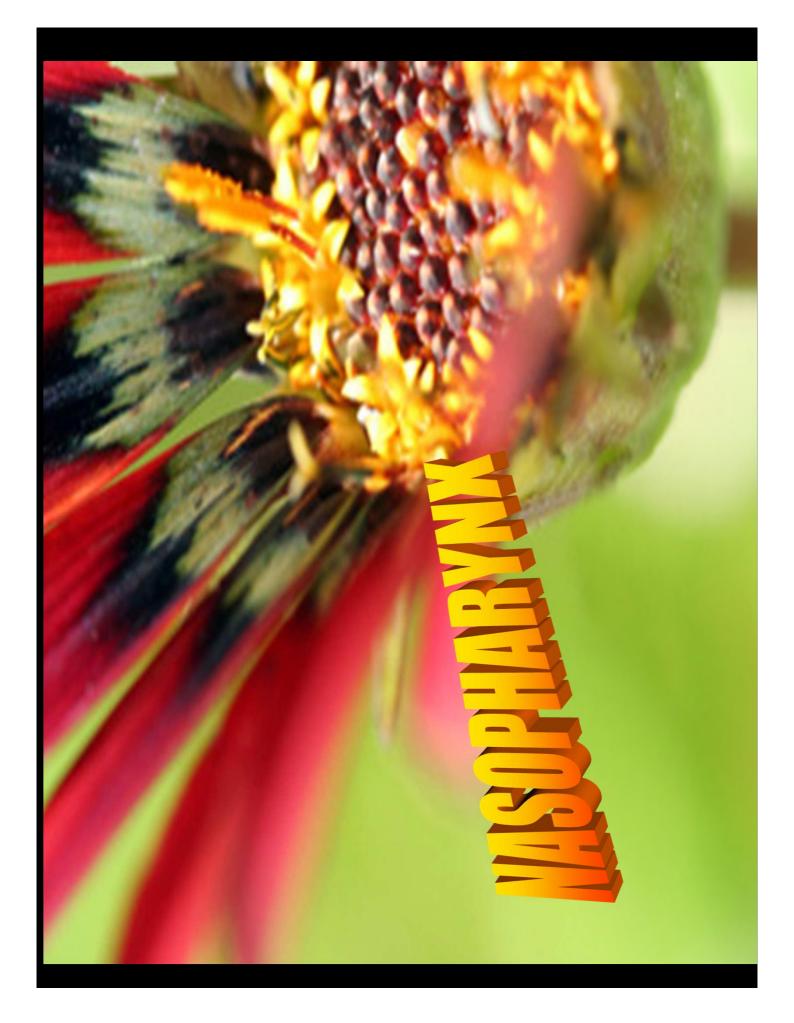
Intra op electrons [ELIOT]


3DCRT / IMRT

THANK YOU







INDICATIONS FOR POST-OP RADIOTHERAPY

Primary:

- •Large primary T4 or T3 with soft tissue infiltration
 - Close or positive margins of excision
 - Deep infiltrative tumour
 - High grade tumour
 - Lympho-vascular and perineural invasion

Lymph nodes:

- Bulky nodal disease N2 / N3
 - Extra nodal extension
 - Multiple level involvement

Post-operative radiotherapy:

- Primary and nodal disease: 50 60 Gy/25-30 fr/5-6 weeks, using reducing fields.
- •Site of residual disease, positive cut margins: 4-10 Gy Boost

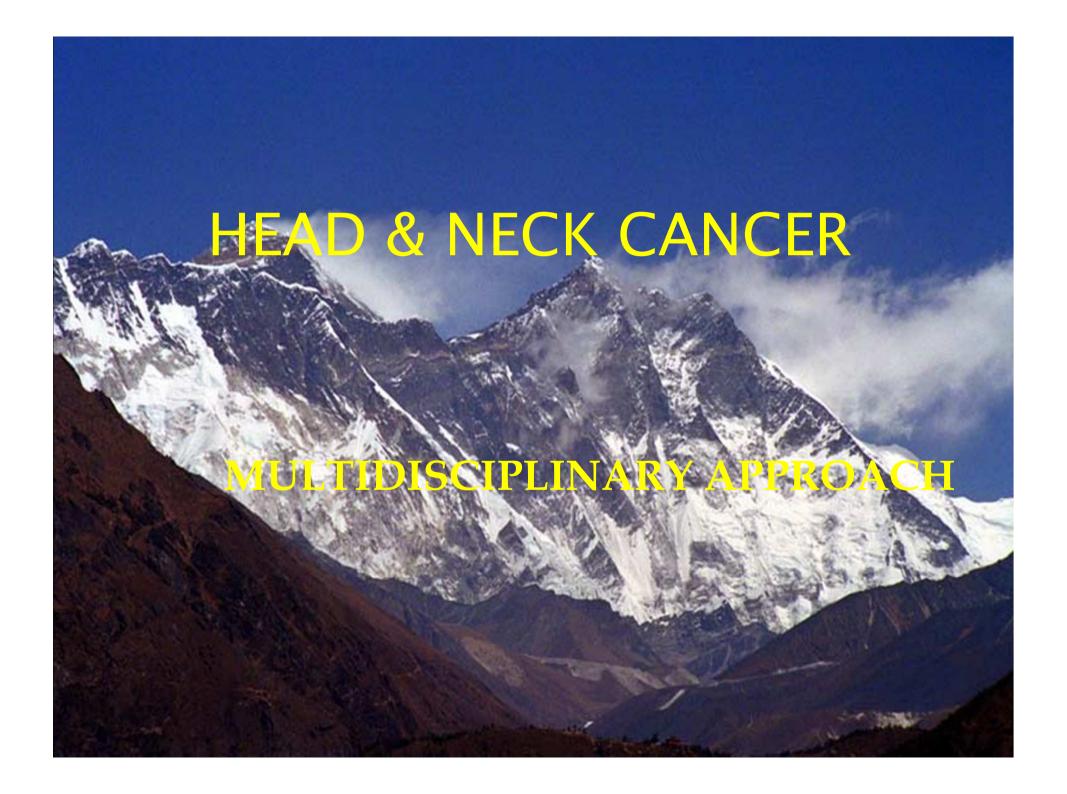
MAXILLARY ANTRUM

- Post-operative Radiation
- T4 tumors
- High grade T3 tumors
- Adenoid cystic carcinoma
- Microscopically positive margins
- Presence of perineural invasion
- Multiple positive nodes or extra- capsular spread
- Multiple levels of node involvement

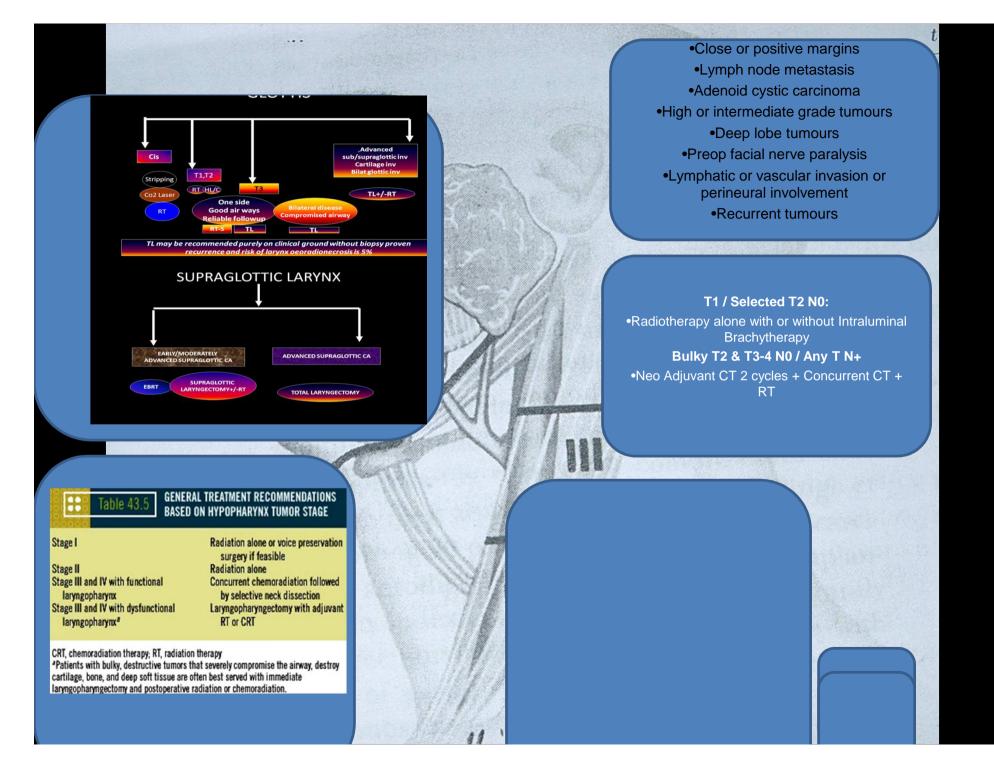
Larynx

```
Postoperative Radiation (indication)
```

- -close / +ve Margin
- soft tissue extn of the primary to neck
- endothelial lined space invasion
- -cartilage and perineural invasion
- multiple +ve nodes
- extranodal extension
- subclinical disease at opposite neck


TREATMENT STRATEGY NPX

- STAGE I,II:- RADIATION
- STAGE III, IVB:- CHEMORADIATION


Concurrent Primary Chemoradiation

(Multi drug)

Auther				Local%	Survival	
		Population				
Zakotnik'98	64	unresectable	MMC,Bleo	75vs29	38 vs10	
Adelstein'99	100	resectable	Cisplat,5FU	77vs45	42vs34	
Calais'99	226	oropharynx	Carbo,5FU	66vs42	51vs31	
Merlano'96	157	unresectable	Cisplat,5FU	64vs32	24vs10	
Adelstein'00	295	unresectable	Cisplat,5FU		29vs20	
Wendt'98	270	unresecable	Cisplat,5FU	36vs17	48vs24	
Brizel'98	116	Resectable	Cisplat,5FU	70vs44	55vs37	
		& unresectable				

Margin directed boost..

- N =509; Stage I & II Ca breast.
- Post-lumpectomy, re-excision when margin< 2 mm.
- WBRT -50Gy, followed by e- boost.
- Median f/u 121 mths.
- No boost when no residual on re-excision (LR-6%).

Final margin status	+ve	0-2 mm	2-5 mm	> 5 mm
Boost dose	20 Gy	20 Gy	14 Gy	10 Gy
LR (12 yrs)	17%	9%	5%	0